Abstract

The facilitated transport of Cu(II) ions from different aqueous nitrate source phases (c Me = 0.001 M, pH = 6.0) across supported (SLMs) and polymer inclusion membranes (PIMs) doped with 1-hexyl-2-methylimidazole as ion carrier was reported. The membrane is characterized by means of atomic force microscopy (AFM). The results show that Cu2+ can be separated very effectively from other transition metal cations as Zn2+, Co2+, and Ni2+ from different equimolar mixtures of these ions. The highest initial fluxes of Cu(II) were found for PIM, while lower values were observed for SLM. However, after taking into account the morphology of the membranes (porosity, tortuosity), the values of the initial flux of Cu(II) transport across PIM is less than that across SLM. The recovery factor of Cu2+ ions during transport across PIM from different mixtures of cations is above 91% after 24 hrs and above 76% during transport across SLM. Also, the stability of PIM and SLM doped with 1-hexyl-2-methylimidazole was confirmed in replicate experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call