Abstract

The preparation of innovative polymeric systems using molecular imprinting technology for application in extracorporeal blood purification is described. Membranes based on a methylmethacrylate-co-acrylic acid copolymer, produced through the phase inversion method, were modified introducing into their structure specific binding sites for cholesterol molecule by adding molecularly imprinted nanoparticles in the membrane matrix. Membranes prepared are intended to selectively remove cholesterol from the blood by using interactions at a molecular level, between the membrane/nanoparticles devices and the template, created during the preparation of polymers. Three polymeric systems in form of nanoparticles were prepared differing in the polymerisation solvent (a mixture of acetonitrile and ethanol (1:1) or pure ethanol), and the molar ratio between the functional monomer and the cross-linker (2.3:1 and 1:1). Two out of three of the prepared polymers showed a very good template rebinding capacity both in phosphate buffer solution (pH 6.9) and in ethanol. In particular the nanoparticles rebound 115.4 mg cholesterol/g polymer in buffer solution, and 57 mg cholesterol/g polymer in ethanol. The deposition of the nanoparticles on the surface of the phase inversion membranes produced devices with interesting rebinding performances towards cholesterol in buffer solution: a specific recognition of 14.09 mg cholesterol/g system (membrane and nanoparticles) was detected, indicating maintained binding capacity of supported particles as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.