Abstract

AbstractSilica‐supported bis(indenyl)– and bis(fluorenyl)–chromium catalysts show good activity in ethylene polymerization. For maximum productivity with the indenyl chromium catalyst, the silica must be dried, with higher dehydration temperatures giving a significant increase in polymerization activity. Less deactivation on thermal aging of the supported bis(indenyl)–chromium catalyst allows ethylene polymerization to proceed for many hours, which provides polyethylenes of low residual chromium content. In contrast to the behavior of supported chromocene catalysts, the indenyl–and fluorenyl–chromium catalysts require a higher hydrogen/ethylene ratio to achieve a specific polymer melt index. Nevertheless, highly saturated polyethylenes are produced with these new catalysts. This result indicates that chain transfer to hydrogen remains the major chain transfer reaction. Addition of cyclopentadiene to a supported indenyl–chromium catalyst provided a catalyst with a much higher transfer response to hydrogen. This result suggests that ligand exchange occurred, producing a supported chromocene catalyst. These overall results are consistent with an active‐site model which comprises a supported divalent chromium center attached to an indenyl or fluorenyl ligand during the polymerization process. Polymerization is believed to occur by a coordinated anionic mechanism of the type previously discussed for a supported chromocene catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.