Abstract
AbstractAlthough supported anionic gold nanoparticle catalysts have been theoretically investigated for their efficacy in activating O2 in aerobic oxidation reactions, limited studies have been reported due to the difficulty of designing these catalysts. Herein, we developed a feasible method for preparing supported anionic gold nanoparticle catalysts using multivacant lacunary polyoxometalates with high negative charges. We confirmed the strong and robust electronic interaction between gold nanoparticles and multivacant lacunary polyoxometalates, and the electronic states of the supported gold nanoparticle catalysts can be sequentially modulated. Particularly, the catalyst prepared using [SiW9O34]10− acted as an efficient reusable heterogeneous catalyst, showing superior catalytic performance for the oxidative dehydrogenation of piperidone derivatives to the corresponding enaminones and remarkably higher stability than supported gold nanoparticle catalysts without this modification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.