Abstract

Large-scale, structural health monitoring remains a challenge especially when I/O measurement data are contaminated by high-level noise. A novel approach that uses incremental support vector regression (SVR), a promising statistics technology, is proposed for large-scale, structural health monitoring. Due to the potential properties of this novel SVR, the SVR-based approach makes structural health monitoring accurately and robustly. A sub-structure strategy is utilized to reduce the number of unknown parameters in the health monitoring formula, thereby making large-scale structural health monitoring possible. Lastly, an incremental SVR training algorithm adopted for the SVR-based approach not only markedly reduces computation time, but identifies structural parameters on-line. Numerical examples show that results of this SVR-based approach for large-scale structural health monitoring are accurate and robust, even when observed data are contaminated with different kinds and intensity levels of noise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call