Abstract

During the last decade, Support Vector Machines (SVM) have proved to be very successful tools for classification and regression problems. The representational performance of this type of networks is studied on a cavity flow facility developed to investigate the characteristics of aerodynamic flows at various Mach numbers. Several test conditions have been experimented to collect a set of data, which is in the form of pressure readings from particular points in the test section. The goal is to develop a SVM based model that emulates the one step ahead behavior of the flow measurement at the cavity floor. The SVM based model is built for a very limited amount of training data and the model is tested for an extended set of test conditions. A relative error is defined to measure the reconstruction performance, and the peak value of the FFT magnitude of the error is measured. The results indicate that the SVM based model is capable of matching the experimental data satisfactorily over the conditions that are close to the training data collection conditions, and the performance degrades as the Mach number gets away from the conditions considered during training.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call