Abstract

Mine tunnels, short transportation tunnels, and hydro-power plan underground spaces excavations are carried out based on Drilling and Blasting (D&B) method. Determination of specific charge in tunnel D&B, according to the involved parameters, is very significant to present an appropriate D&B design. Suitable explosive charge selection and distribution lead to reduced undesirable effects of D&B such as inappropriate pull rate, over-break, under-break, unauthorized ground vibration, air blast, and fly rock. So far, different models are presented to estimate specific charge in tunnel blasting. In this study, 332 data sets, including geomechanical characteristics, D&B, and specific charge are gathered from 33 tunnels. The data are related to three dams and hydropower plans in Iran (Gotvand, Masjed-Solayman, and Siah-Bishe). Specific charge is modeled in inclined hole cut drilling pattern. In this regard, Support Vector Machine (SVM) algorithm based on polynomial Kernel function is used as a tool for modeling. Rock Quality Designation (RQD) index, Uniaxial Compressive Strength (UCS), tunnel cross-section area, maximum depth of blast hole, and blast hole coupling ratio are considered as independent input variables and the specific charge is considered as a dependent output variable. The modeling results confirm the acceptable performance of SVM in specific charge estimation with minimum error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.