Abstract
A new classification scheme for the computer-aided detection of colonic polyps in computed tomographic colonography is proposed. The scheme involves an ensemble of support vector machines (SVMs) for classification, a smoothed leave-one-out (SLOO) cross-validation method for obtaining error estimates, and use of a bootstrap aggregation method for training and model selection. Our use of an ensemble of SVM classifiers with bagging (bootstrap aggregation), built on different feature subsets, is intended to improve classification performance compared with single SVMs and reduce the number of false-positive detections. The bootstrap-based model-selection technique is used for tuning SVM parameters. In our first experiment, two independent data sets were used: the first, for feature and model selection, and the second, for testing to evaluate the generalizability of our model. In the second experiment, the test set that contained higher resolution data was used for training and testing (using the SLOO method) to compare SVM committee and single SVM performance. The overall sensitivity on independent test set was 75%, with 1.5 false-positive detections/study, compared with 76%-78% sensitivity and 4.5 false-positive detections/study estimated using the SLOO method on the training set. The sensitivity of the SVM ensemble retrained on the former test set estimated using the SLOO method was 81%, which is 7%-10% greater than the sensitivity of a single SVM. The number of false-positive detections per study was 2.6, a 1.5 times reduction compared with a single SVM. Training an SVM ensemble on one data set and testing it on the independent data has shown that the SVM committee classification method has good generalizability and achieves high sensitivity and a low false-positive rate. The model selection and improved error estimation method are effective for computer-aided polyp detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.