Abstract

Breast cancer is the second largest cause of cancer deaths among women. At the same time, it is also among the most curable cancer types if it can be diagnosed early. Research efforts have reported with increasing confirmation that the support vector machines (SVM) have greater accurate diagnosis ability. In this paper, breast cancer diagnosis based on a SVM-based method combined with feature selection has been proposed. Experiments have been conducted on different training-test partitions of the Wisconsin breast cancer dataset (WBCD), which is commonly used among researchers who use machine learning methods for breast cancer diagnosis. The performance of the method is evaluated using classification accuracy, sensitivity, specificity, positive and negative predictive values, receiver operating characteristic (ROC) curves and confusion matrix. The results show that the highest classification accuracy (99.51%) is obtained for the SVM model that contains five features, and this is very promising compared to the previously reported results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.