Abstract

The support vector machine (SVM), as a novel type of learning machine, for the first time, was used to develop a Quantitative Structure-Property Relationship (QSPR) model of the heat capacity of a diverse set of 182 compounds based on the molecular descriptors calculated from the structure alone. Multiple linear regression (MLR) and radial basis function networks (RBFNNs) were also utilized to construct quantitative linear and nonlinear models to compare with the results obtained by SVM. The root-mean-square (rms) errors in heat capacity predictions for the whole data set given by MLR, RBFNNs, and SVM were 4.648, 4.337, and 2.931 heat capacity units, respectively. The prediction results are in good agreement with the experimental value of heat capacity; also, the results reveal the superiority of the SVM over MLR and RBFNNs models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.