Abstract
Excitation-emission matrices (EEM) and total synchronous fluorescence spectra (SFS) of normal and malignant breast tissue specimens are measured in UV-VIS spectral region to serve as data inputs in development of Support Vector Machine (SVM) based breast cancer diagnostics tool. Various input data combinations are tested for classification accuracy using SVM prediction against histopathology findings to discover the best combination regarding diagnostics sensitivity and specificity. It is shown that with EEM data SVM provided 67% sensitivity and 62% specificity diagnostics. With SFS data SVM provided 100% sensitivity and specificity for a several input data combinations. Among these combinations those that require minimal data inputs are identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.