Abstract

BackgroundLymph node metastasis (LNM) of gastric cancer is an important prognostic factor regarding long-term survival. But several imaging techniques which are commonly used in stomach cannot satisfactorily assess the gastric cancer lymph node status. They can not achieve both high sensitivity and specificity. As a kind of machine-learning methods, Support Vector Machine has the potential to solve this complex issue.MethodsThe institutional review board approved this retrospective study. 175 consecutive patients with gastric cancer who underwent MDCT before surgery were included. We evaluated the tumor and lymph node indicators on CT images including serosal invasion, tumor classification, tumor maximum diameter, number of lymph nodes, maximum lymph node size and lymph nodes station, which reflected the biological behavior of gastric cancer. Univariate analysis was used to analyze the relationship between the six image indicators with LNM. A SVM model was built with these indicators above as input index. The output index was that lymph node metastasis of the patient was positive or negative. It was confirmed by the surgery and histopathology. A standard machine-learning technique called k-fold cross-validation (5-fold in our study) was used to train and test SVM models. We evaluated the diagnostic capability of the SVM models in lymph node metastasis with the receiver operating characteristic (ROC) curves. And the radiologist classified the lymph node metastasis of patients by using maximum lymph node size on CT images as criterion. We compared the areas under ROC curves (AUC) of the radiologist and SVM models.ResultsIn 175 cases, the cases of lymph node metastasis were 134 and 41 cases were not. The six image indicators all had statistically significant differences between the LNM negative and positive groups. The means of the sensitivity, specificity and AUC of SVM models with 5-fold cross-validation were 88.5%, 78.5% and 0.876, respectively. While the diagnostic power of the radiologist classifying lymph node metastasis by maximum lymph node size were only 63.4%, 75.6% and 0.757. Each SVM model of the 5-fold cross-validation performed significantly better than the radiologist.ConclusionsBased on biological behavior information of gastric cancer on MDCT images, SVM model can help diagnose the lymph node metastasis preoperatively.

Highlights

  • Lymph node metastasis (LNM) of gastric cancer is an important prognostic factor regarding longterm survival

  • A meta-analysis showed that the average sensitivity and specificity in determining LN metastasis were as follows: 39.9% and 81.8% for abdominal ultrasound, 70.8% and 84.6% for endoscopic ultrasonography, 80.0% and 77.8% for MDCT, 68.8% and 75.0% for conventional MRI, 34.3% and 93.2% for FDG-PET, and 54.7% and 92.2% for FDG-PET/CT [2]

  • Lymph node metastasis affects the surgical treatment of patients with gastric cancer and is an important factor in prognosis

Read more

Summary

Introduction

Lymph node metastasis (LNM) of gastric cancer is an important prognostic factor regarding longterm survival. Several imaging techniques which are commonly used in stomach cannot satisfactorily assess the gastric cancer lymph node status. They can not achieve both high sensitivity and specificity. Many imaging techniques have been used to assess gastric cancer, including abdominal ultrasound, endoscopic ultrasound (EUS), multi-slice spiral CT, conventional MRI, and FDG-PET. These imaging methods cannot reliably confirm or exclude the presence of lymph node metastasis [1]. How to integrate the complex factors affecting lymph nodes and improve the accuracy of diagnosing LNM is the topic of our study

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.