Abstract

Electron Energy-Loss Spectroscopy (EELS) is a powerful and versatile spectroscopic technique used to study the composition and local optoelectronic properties of nanometric materials. Currently, this technique is generating large amounts of spectra per experiment, producing a huge quantity of data to analyse. Several strategies can be applied in order to classify these data to map physical properties at the nanoscale. In the present study, the Support Vector Machine (SVM) algorithm is applied to EELS, and its effectiveness identifying EEL spectra is assessed. Our results evidence the capacity of SVM to determine the oxidation state of iron and manganese in iron and manganese oxides, based on the ELNES of the white lines of the transition metal. The SVM algorithm is first trained with given datasets and then the resulting models are tested through noisy test data sets. We demonstrate that SVM exhibits a very good performance classifying these EEL spectra, despite the usual level of noise and instrumental energy shifts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.