Abstract

ABSTRACT Predicting the stock market is one of the significant chores and has a successful prediction of stock rates, and it helps in making correct decisions. The prediction of the stock market is the main challenge due to blaring, chaotic data as well as non-stationary data. In this research, the support vector machine (SVM) is devised for performing an effective stock market prediction. At first, the input time series data is considered and the pre-processing of data is done by employing a standard scalar. Then, the time intrinsic features are extracted and the suitable features are selected in the feature selection stage by eliminating other features using recursive feature elimination. Afterwards, the Long Short-Term Memory (LSTM) based prediction is done, wherein LSTM is trained to employ Aquila circle-inspired optimization (ACIO) that is newly introduced by merging Aquila optimizer (AO) with circle-inspired optimization algorithm (CIOA). On the other hand, delay-based matrix formation is conducted by considering input time series data. After that, convolutional neural network (CNN)-based prediction is performed, where CNN is tuned by the same ACIO. Finally, stock market prediction is executed utilizing SVM by fusing the predicted outputs attained from LSTM-based prediction and CNN-based prediction. Furthermore, the SVM attains better outcomes of minimum mean absolute percentage error; (MAPE) and normalized root-mean-square error (RMSE) with values about 0.378 and 0.294.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.