Abstract

Detecting faces across multiple views is more challenging than in a fixed view, e.g. frontal view, owing to the significant non-linear variation caused by rotation in depth, self-occlusion and self-shadowing. To address this problem, a novel approach is presented in this paper. The view sphere is separated into several small segments. On each segment, a face detector is constructed. We explicitly estimate the pose of an image regardless of whether or not it is a face. A pose estimator is constructed using Support Vector Regression. The pose information is used to choose the appropriate face detector to determine if it is a face. With this pose-estimation based method, considerable computational efficiency is achieved. Meanwhile, the detection accuracy is also improved since each detector is constructed on a small range of views. We developed a novel algorithm for face detection by combining the Eigenface and SVM methods which performs almost as fast as the Eigenface method but with a significant improved speed. Detailed experimental results are presented in this paper including tuning the parameters of the pose estimators and face detectors, performance evaluation, and applications to video based face detection and frontal-view face recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.