Abstract

With the development of information technology, a large amount of time-series data is generated and stored in the field of economic management, and the potential and valuable knowledge and information in the data can be mined to support management and decision-making activities by using data mining algorithms. In this paper, three different time-series information granulation methods are proposed for time-series information granulation from both time axis and theoretical domain: time-series time-axis information granulation method based on fluctuation point and time-series time-axis information granulation method based on cloud model and fuzzy time-series prediction method based on theoretical domain information granulation. At the same time, the granulation idea of grain computing is introduced into time-series analysis, and the original high-dimensional time series is granulated into low-dimensional grain time series by information granulation of time series, and the constructed information grains can portray and reflect the structural characteristics of the original time-series data, to realize efficient dimensionality reduction and lay the foundation for the subsequent data mining work. Finally, the grains of the decision tree are analyzed, and different support vector machine classifiers corresponding to each grain are designed to construct a global multiclassification model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.