Abstract
Let [Formula: see text] be a connected reductive algebraic group over an algebraically closed field [Formula: see text] of prime characteristic [Formula: see text] and [Formula: see text]. For a given nilpotent [Formula: see text]-character [Formula: see text], let [Formula: see text] be a baby Verma module associated with a restricted weight [Formula: see text]. A conjecture describing the support variety of [Formula: see text] via that of its restricted counterpart is given: [Formula: see text]. Under the assumption of [Formula: see text](the Coxeter number) and [Formula: see text] [Formula: see text]-regular, this conjecture is proved when [Formula: see text] falls in the regular nilpotent orbit for any [Formula: see text] and the subregular nilpotent orbit for [Formula: see text] being of type [Formula: see text]. We also verify this conjecture whenever [Formula: see text] is of type [Formula: see text] and [Formula: see text] falls in the minimal nilpotent orbit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.