Abstract

AbstractIn vivo microelectrodes are essential for neuroscience studies. However, development of microelectrodes with both flexibility and multifunctionality for recording chemical and electrical signals in the same extracellular microspace and modulating neural activity remains challenging. Here, we find that pure PEDOT:PSS fibers (i.e., support‐free) exhibit high conductivity, fast heterogeneous electron transfer, and suitable charge storage and injection capabilities, and can thus directly act as microelectrodes not only for chemical and electrophysiological recording in the same extracellular microspace, but also for electromodulation of neural microcircuit activity. Moreover, the microelectrodes mechanically match with neural tissues, exhibiting less foreign body responses. Given the multifunctionality, flexibility, and biocompatibility, the support‐free PEDOT:PSS‐based microelectrodes offer a new avenue to microelectrode technology for neuroscience research, diagnostics and therapeutics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.