Abstract
The effects of supports (CeO2, ZrO2, MnO2, SiO2 and active carbon) on the structure and catalytic performance of Ru-based catalysts for Fischer-Tropsch synthesis to olefins (FTO) were investigated. It was found that the intrinsic characteristics of supports and the metal-support interaction (MSI) would greatly influence the catalytic performance. The catalytic activity followed the order: Ru/SiO2 > Ru/ZrO2 > Ru/MnO2 > Ru/AC > Ru/CeO2. As far as olefins selectivity was concerned, both Ru/SiO2 and Ru/MnO2 possessed high selectivity to olefins (>70%), while olefins selectivity for Ru/ZrO2 was the lowest (29.9%). Ru/SiO2 exhibited the appropriate Ru nanoparticles size (~ 5 nm) with highest activity due to the relatively low MSI between Ru and SiO2. Both Ru/AC and Ru/MnO2 presented low CO conversion with Ru nanoparticles size of 1–3 nm. Stronger olefins secondary hydrogenation capacity led to the significantly decreased olefins selectivity for Ru/AC and Ru/ZrO2. In addition, partial Ru species might be encapsulated by reducible CeO2 layer for Ru/CeO2 due to strong MSI effects, leading to the lowest activity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.