Abstract

ZrO2–TiO2 mixed oxides, prepared using the sol–gel method, were used as supports for platinum catalysts. The effects of catalyst pre-reduction and surface acidity on the performance of Pt/ZT catalysts for the reduction of NO with CH4 were studied. The diffuse reflectance infrared Fourier transformed (DRIFT) spectra of CO adsorbed on the Pt/ZT catalysts, and also on the Pt/T and Pt/Z references, pre-reduced at 773K in hydrogen, revealed that an SMSI state is developed in the Ti-rich oxide-supported platinum catalysts. However, no shift in the binding energy of Pt 4f7/2 level for Pt/T and Pt deposited on Ti-rich support counterparts pre-reduced at 773K was found by photoelectron spectroscopy. The DRIFT spectra of the catalysts under the NO+O2 co-adsorption revealed the appearance of nitrite/nitrate species on the surface of the Zr-containing catalysts, which displayed acidic properties, but were almost absent in the Pt/T catalyst. The intensity of these bands reached a maximum for the Pt/ZT(1:1) catalyst, which in turn exhibited a larger specific area. In the absence of oxygen in the feed stream, the NO+CH4 reaction showed DRIFT spectra assigned to surface isocyano species. Since the intensity of this band is higher for the Pt/ZT (9:1) catalyst, it seems that such species are developed at the Pt–support interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.