Abstract
PtCo bimetallic and Co, Pt monometallic catalysts supported on γ-Al2O3, SiO2, TiO2 and activated carbon (AC) were prepared and evaluated for the hydrogenation of benzene at relatively low temperatures (343K) and atmospheric pressure. Results from flow reactor studies showed that supports strongly affected the catalytic properties of different bimetallic catalysts. AC supported PtCo bimetallic catalysts exhibited significantly better performance than the other bimetallic catalysts, and all the bimetallic catalysts possessed higher activity than the corresponding monometallic catalysts. Results from CO chemisorption and H2-temperature-programmed reduction (H2-TPR) studies suggested that different catalysts possessed different properties in chemisorption capacity and reduction behavior, and AC supported PtCo catalysts possessed significantly higher CO chemisorption capacity compared to the other catalysts. Extended X-ray absorption fine structure (EXAFS) and transmission electron microscopy (TEM) analysis provided additional information regarding the formation of Pt–Co bimetallic bonds and metallic particle size distribution in the PtCo bimetallic catalysts on different supports.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.