Abstract

We consider a stochastic Volterra integral equation with regular path-dependent coefficients and a Brownian motion as integrator in a multidimensional setting. Under an imposed absolute continuity condition, the unique solution is a semimartingale that admits almost surely Hölder continuous paths. Based on functional Itô calculus, we prove that the support of its law in Hölder norms can be described by a flow of mild solutions to ordinary integro-differential equations that are constructed by means of the vertical derivative of the diffusion coefficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.