Abstract
Concentration reduction theory is the leading theory regarding the mechanism of competition for nutrients in soils among plants, yet it has not been rigorously tested. Here we used a spatially explicit, fine-scale grid-based model that simulated diffusion and plant uptake of nutrients by plants in soil to test whether concentration reduction theory was appropriate for terrestrial plant competition for nutrients. In the absence of competition, increasing the rate of diffusion allows a plant to maintain positive growth rates below the lowest average concentration to which it can reduce nutrients in soil solution (R*). As such, differences among plants in the reduction of soil moisture, which here primarily affects nutrient diffusion, can cause R* to predict competitive success incorrectly. The stronger competitor for nutrients captures the largest proportion of the nutrient supply by ensuring nutrients contact its roots before those of a competitor. Although the metric derived from concentration reduction theory, R*, might have predictive power for competitive outcomes in terrestrial ecosystems, this evidence suggests that plants outcompete other plants for nutrients by pre-empting the supply, not reducing the average concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.