Abstract

During terrestrial differentiation, the relatively small amount of phosphorus that migrated to the lithosphere was incorporated into igneous rock, predominantly in the form of basic calcium orthophosphate (Ca10(PO4)6(OH,F,Cl)2, apatite). Yet, the highly insoluble nature of calcium apatite presents a significant problem to those contemplating the origin of life given the foundational role of phosphate (PO43-) in extant biology and the apparent requirement for PO43- as a catalyst, buffer and reagent in prebiotic chemistry. Reduced meteorites such as enstatite chondrites are highly enriched in phosphide minerals, and upon reaction with water these minerals can release phosphorus species of various oxidation states. Here, we demonstrate how reduced phosphorus species can be fully oxidized to PO43- simply by the action of ultraviolet light on H2S/HS-. We used low pressure Hg lamps to simulate UV output from the young Sun and 31P NMR spectroscopy to monitor the progress of reactions. Our experimental findings provide a cosmochemically and geochemically plausible means for supply of PO43- that was widely available to prebiotic chemistry and nascent life on early Earth, and potentially on other planets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call