Abstract

To our knowledge, most studies demonstrating the role of manipulating maternal nutrition on hindgut (i.e., large intestine) microbiota in the offspring have been performed in non-ruminants. Whether this phenomenon exists in cattle is largely unknown. Therefore, the objectives of the current study were to evaluate the impact of maternal post-ruminal supply of methionine during late-pregnancy in dairy cows on fecal microbiota and metabolome in neonatal calves, and their association with body development and growth performance during the preweaning period. To achieve this, heifer calves, i.e., neonatal female offspring, born to Holstein cows receiving either a control (CON) diet (n = 13) or CON plus rumen-protected methionine (MET; Evonik Nutrition & Care GmbH) during the last 28 days of pregnancy were used. Fecal samples from heifers were collected from birth until 6 weeks of age, i.e., the preweaning period. Fecal microbiota was analyzed with QIIME 2 whereas fecal metabolites were measured using an untargeted LC-MS approach. At birth, MET heifers had greater (P ≤ 0.05) BW, HH, and WH. During the preweaning period, no differences between groups were detected for starter intake (P = 0.77). However, MET heifers maintained greater (P ≤ 0.05) BW, HH and tended (P = 0.06) to have greater WH and average daily gain (ADG) (P = 0.10). Fecal microbiota and metabolome profiles through 42 days of age in MET heifers indicated greater capacity for hindgut production of endogenous antibiotics and enhanced hindgut functionality and health. Enhancing maternal post-ruminal supply of methionine during late-gestation in dairy cows has a positive effect on hindgut functionality and health in their offspring through alterations in the fecal microbiota and metabolome without affecting feed intake. Those alterations could limit pathogen colonization of the hindgut while providing essential nutrients to the neonate. Together, such responses contribute to the ability of young calves to achieve better rates of nutrient utilization for growth.

Highlights

  • The hindgut microbiota contribute substantially to the regulation of host metabolism, immune response and other crucial physiological processes via the production of numerous bioactive metabolites such as volatile fatty acids (VFA), essential amino acids, vitamins and neurotransmitters (Thursby and Juge, 2017)

  • In a recent study using another cohort of cows from the present study (Batistel et al, 2017a), we reported that enhanced post-ruminal supply of methionine during late-pregnancy led to greater dry matter intake (DMI), plasma methionine and plasma insulin

  • We discussed the possibility that those changes might have stimulated greater materno-fetal transfer of nutrients from maternal to fetal circulation via the upregulation of placental glucose-amino acid transporters and mammalian target of rapamycin (MTOR) signaling proteins

Read more

Summary

Introduction

The hindgut microbiota contribute substantially to the regulation of host metabolism, immune response and other crucial physiological processes via the production of numerous bioactive metabolites such as volatile fatty acids (VFA), essential amino acids, vitamins and neurotransmitters (Thursby and Juge, 2017). These coordinated processes promote growth and development in dairy calves (Malmuthuge and Guan, 2017). Those profiles were positively correlated with better hindgut development including an increase in energy extraction from polysaccharides and a reduction in intestinal permeability and inflammation, all of which led to greater growth performance in piglest (Cheng et al, 2018)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.