Abstract

The primary energy consumption of two kinds of solar assisted absorption systems (solar assisted absorption chiller during summertime and heat pump during wintertime or solar assisted absorption chiller with direct gas combustion for heating during wintertime) is compared with the primary energy consumption of a compression chiller which can work as a heat pump during wintertime. For the absorption systems three technical options were considered: a single effect machine; a double effect machine with the solar energy delivered to the lower temperature desorber and combustion heat of a gas burner delivered to the higher temperature desorber; a double effect machine with both solar energy and combustion heat delivered to the higher temperature desorber. The analysis performed in this article shows that solar assisted absorption chillers, absorption heat pumps and direct solar heating systems even with low and intermediate solar fractions can operate with considerably less primary energy consumption than compression systems. Further, the necessary solar collector area to achieve that goal is compatible with roof area available in buildings. It was also verified that, for the double effect absorption machines, there is no advantage in delivering the solar energy to the higher temperature desorber, thus establishing as preferable the solution in which it is delivered to the lower temperature desorber.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.