Abstract

In electricity wholesale markets, generators often sign long term contracts with purchasers of power in order to hedge risks. In this paper, we consider a market where demand is uncertain, but can be represented as a function of price together with a random shock. Each generator offers a smooth supply function into the market and wishes to maximize his expected profit, allowing for his contract position. We investigate supply function equilibria in this setting, using a model introduced by Anderson and Philpott. We study first the existence of a unique monotonically increasing supply curve that maximizes the objective function under the constraint of limited generation capacity and a price cap, and discuss the influence of the generator’s contract on the optimal supply curve. We then investigate the existence of a symmetric Nash supply function equilibrium, where we do not have to assume that the demand is a concave function of price. Finally, we identify the Nash supply function equilibrium which gives rise to the generators’ maximal expected profit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call