Abstract

Operator-stable laws and operator-semistable laws (introduced as limit distributions by M. Sharpe and R. Jajte, respectively) are characterized by decomposability properties. Disintegration of their corresponding Lévy measures requires appropriate cross sections. Furthermore in both situations the Lévy measures constitute a Bauer simplex whose extreme boundary can be explicitly given. Finally the infinitely differentiable Lebesgue density of an operator-semistable law is shown to be even analytic in some cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.