Abstract
IntroductionThe accumulation of oxidative stress, neuroinflammation and abnormal aggregation of amyloid β-peptide (Aβ) have been shown to induce synaptic dysfunction and memory deficits in Alzheimer's disease (AD). Cellular depletion of the major endogenous antioxidant Glutathione (GSH) has been linked to cognitive decline and the development of AD pathology. Supplementation with γ-glutamylcysteine (γ-GC), the immediate precursor and the limiting substrate for GSH biosynthesis, can transiently augment cellular GSH levels by bypassing the regulation of GSH homeostasis. MethodsIn the present study, we investigated the effect of dietary supplementation of γ-GC on oxidative stress and Aβ pathology in the brains of APP/PS1 mice. The APP/PS1 mice were fed γ-GC from 3 months of age with biomarkers of apoptosis and cell death, oxidative stress, neuroinflammation and Aβ load being assessed at 6 months of age. ResultsOur data showed that supplementation with γ-GC lowered the levels of brain lipid peroxidation, protein carbonyls and apoptosis, increased both total GSH and the glutathione/glutathione disulphide (GSH/GSSG) ratio and replenished ATP and the activities of the antioxidant enzymes (superoxide dismutase (SOD), catalase, glutamine synthetase and glutathione peroxidase (GPX)), the latter being a key regulator of ferroptosis. Brain Aβ load was lower and acetylcholinesterase (AChE) activity was markedly improved compared to APP/PS1 mice fed a standard chow diet. Alteration in brain cytokine levels and matrix metalloproteinase enzymes MMP-2 and MMP-9 suggested that γ-GC may lower inflammation and enhance Aβ plaque clearance in vivo. Spatial memory was also improved by γ-GC as determined using the Morris water maze. ConclusionOur data collectively suggested that supplementation with γ-GC may represent a novel strategy for the treatment and/or prevention of cognitive impairment and neurodegeneration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.