Abstract

High levels of reactive oxygen species in the semen of infertile patients or spontaneously generated during in vitro sperm handling may impair sperm quality, fertilization and embryo developmental competence. We recently reported that zinc, d-aspartate and co-enzyme Q10, contained in the dietary supplement Genadis® (Merck Serono), have protective effects on human and bull sperm motility, lipid peroxidation and DNA fragmentation in vitro; furthermore, in bovine, treated spermatozoa had an improved ability to support embryo development. However, only a few studies have investigated the protective role of antioxidants during in vitro sperm handling in the presence of an exogenous oxidative stress. Herein, to simulate such conditions in an animal model, we induced exogenous oxidative stress on spermatozoa through the xanthine-xanthine oxidase system and investigated its effects on sperm function and subsequent embryo developmental competence in the presence of zinc, d-Asp and CoQ10 protection. The main results showed that exogenous oxidative stress decreased sperm motility, increased sperm DNA fragmentation, and reduced fertilization and blastocyst rates and quality. Pre-treatment with zinc, d-aspartate and co-enzyme Q10 before exogenous oxidative stress was able to prevent these effects. Supplementation of sperm culture media with zinc, d-aspartate and co-enzyme Q10 could protect sperm from oxidative stress damage during in vitro handling in assisted reproductive technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call