Abstract

During the aging process, dimers of dietary vitamin A accumulated in retinal pigment epithelium (RPE) cells. Vitamin A dimer-mediated photooxidation resulted in RPE apoptosis, which is associated with age-related degenerative disease of retina, leading to blindness. It has been reported that proanthocyanidin-rich grape seed extract reduces oxidative stress in the eye. In this study, we investigated the underlying mechanism of photooxidation-induced apoptosis inhibition by procyanidins B2 (PB2), one of the main components of grape seed proanthocyanidin. To mimic vitamin A dimer-mediated photooxidation, ARPE-19 cells that accumulated vitamin A dimer, A2E, were used as a model system. Exposure of A2E loaded ARPE-19 cells to blue light induced ER stress and resulted in significant apoptosis. Pretreatment of blue light-exposed A2E containing ARPE-19 cells with PB2 inhibited apoptosis, increased the ratio of Bcl-2/Bax in the mitochondria, attenuated ROS and cytochrome c release, and decreased caspase cleavage. Additionally, PB2 inhibited the phosphorylation of ER stress markers elF2α and IRE1α and reduced CHOP expression. Moreover, PB2 inhibition of apoptosis is dependent on the UPR chaperone GRP78, indicating PB2 inhibits vitamin A dimer-mediated apoptosis in RPE cells by activating the UPR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.