Abstract
Nitric oxide (NO) plays an important role in glucose and lipid metabolism. We previously reported that NO synthesis inhibitors, such as NG-nitro-L-arginine methyl ester (L-NAME), deteriorate insulin sensitivity and lipid metabolism, while the addition of L-arginine reverses this deterioration. L-arginine is a precursor of NO, and is used as a supplement in the US. In the present study, we evaluated whether the administration of L-arginine alone improves insulin resistance and serum lipid levels in insulin-resistant and hypertriglycemic rat models. Diabetic rats were divided into 3 groups: the control (Cont) group (standard diet), the L-NAME group (diet containing L-NAME), and the Arg group (diet containing L-arginine). After 4 weeks of breeding, urinary NOx, glucose infusion rate (GIR), glucose and lipid tolerance tests were performed. Urinary NOx levels were significantly lower in the L-NAME group than in the Cont group. The GIR in the L-NAME group was significantly lower than that in the Cont group, suggesting increased insulin resistance. However, the administration of L-arginine did not influence insulin resistance in the Arg group. Oral lipid administration significantly increased plasma triglyceride levels in the L-NAME group and plasma triglyceride levels were significantly lower in the Arg group than in the Cont group. The area under the curve of plasma triglyceride levels after oral lipid administration was larger in the L-NAME group than in the Cont group. The administration of L-NAME increased insulin resistance and decreased lipid metabolism. L-arginine significantly increased urinary NO secretion but did not improve insulin resistance, although it did improve lipid metabolism. These findings suggest that supplementation of L-arginine cannot improve insulin resistance in diabetic rats probably due to increased insulin secretion by L-arginine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.