Abstract

Shrimp is an important food source consumed worldwide. An intensive aquaculture system with overuse of feed in combination with detrimental effects from climate change are serious problems leading to mass mortality of cultured shrimp. Biofloc technology is an approach to managing water quality and controlling the disease to counter the negative side of intensive culture system; however, most of the biofloc applications are naturally formed, which could be inconsistent. In this study, we employed an established optimal ratio of microbial consortium called “ex-situ biofloc (BF)” to be used as a feed supplement in shrimp cultured in a zero-water discharged system at low salinity conditions. Three feeding groups (100%commercial pellet (C), 95%C+BF, 90%C+BF) of shrimp were cultured for six weeks. The effect of an ex-situ biofloc supplement with commercial pellet reduction showed that levels of ammonium, nitrite, nitrate and phosphate were significantly decreased in water culture. Shrimp fed with ex-situ biofloc supplement with commercial pellet reduction exhibited significantly increased shrimp weight and survival, and significantly expressed growth-related genes involving lipolysis and energy metabolism higher than those fed with 100% commercial pellet. Nutritional analysis indicated a significant increase of docosahexaenoic acid (DHA) and eicosenoic acid (C20:1) concentrations in the ex-situ biofloc supplemented shrimp. This finding revealed the potential of ex-situ biofloc to manage water quality, improve shrimp growth performance and enhance shrimp nutritional value under intensive culture at low salinity conditions. The beneficial effects of the ex-situ biofloc in shrimp culture system make it a promising alternative strategy to mitigate climate change effects leading to the sustainable production of high-quality shrimp in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.