Abstract

Three experiments were conducted to evaluate supplementation of dried distillers grains with solubles (DGS) to spring-calving beef cows (n = 120; 541 kg of initial BW; 5.1 initial BCS) consuming low-quality forage during late gestation and early lactation. Supplemental treatments included (DM basis) 1) 0.77 kg/d DGS (DGSL); 2) 1.54 kg/d DGS (DGSI); 3) 2.31 kg/d DGS (DGSH); 4) 1.54 kg/d of a blend of 49% wheat middlings and 51% cottonseed meal (POS); and 5) 0.23 kg/d of a cottonseed hull-based pellet (NEG). Feeding rate and CP intake were similar for DGSI and POS. In Exp. 1, cows were individually fed 3 d/wk until calving and 4 d/wk during lactation; total supplementation period was 119 d, encompassing 106 d of gestation and 13 d of lactation. Tall-grass prairie hay (5.6% CP, 50% TDN, 73% NDF; DM basis) was fed for ad libitum intake throughout the supplementation period. Change in cow BW and BCS during gestation was similar for DGSI and POS (-5.0 kg, P = 0.61 and -0.13, P = 0.25, respectively) and linearly increased with increasing DGS level (P < 0.01). Likewise, during the 119-d supplementation period, BW and BCS change were similar for DGSI and POS (-72 kg, P = 0.22 and -0.60, P = 0.10) and increased linearly with respect to increasing DGS (P < 0.01). The percentage of cows exhibiting luteal activity at the beginning of breeding season (56%, P = 0.31), AI conception rate (57%, P = 0.62), or pregnancy rate at weaning (88%, P = 0.74) were not influenced by supplementation. In Exp. 2, 30 cows from a separate herd were used to evaluate the effect of DGS on hay intake and digestion. Supplementation improved all digestibility measures compared with NEG. Hay intake was not influenced by DGS (P > 0.10); digestibility of NDF, ADF, CP, and fat linearly increased with increasing DGS. In Exp. 3, milk production and composition were determined for cows (n = 16/treatment) of similar days postpartum from Exp. 1. Daily milk production was not influenced by supplementation (6.3 kg/d, P = 0.25). Milk fat (2.1%) and lactose (5.0%) were not different (P > 0.10). Milk protein linearly increased as DGS increased (P < 0.05) and was greater for DGSI compared with POS. Similar cow performance was achieved when cows were fed DGS at the same rate and level of CP as a traditional cottonseed meal-based supplement. Increasing amounts of DGS did not negatively influence forage intake or diet digestibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call