Abstract

Minimising matrix effects through high sample purity is of major importance for LC/MS analysis. Here we provide supplementary data and protocols related to the article “Rapid sample clean-up procedure of aminophosphonates for LC/MS analysis” (revised article submitted to Talanta) [1]. It is demonstrated that the tested phosphonates iminodi(methylenephosphonic acid) (IDMP), hydroxyethelidene(diphosphonic acid) (HEDP), aminotris(methylenephosphonic acid) (ATMP), ethylenediaminetetra(methyloenephosphonic acid) (EDTMP) and diethylenetriaminepenta(methylenephosphonic acid) (DTPMP) dissolved in tap water are not detectable by LC/MS without sample clean-up. Only the smallest aminophosphonate amino(methylenephosphonic acid) (AMPA) was detectable but the recovery is decreased drastically.The optimised sample clean-up with cation exchange resin (CER) Dowex 50WX8 is described in detail and illustrated. The protocol is provided. The influence of the incubation time, addition of different ammonium acetate concentrations, different samples pHs and different water qualities is demonstrated and preferred clean-up conditions are recommended. Calibration results of all tested aminophosphonates are validated regarding limit of detection, limit of quantification, lower limit of quantification, absolute and relative process standard deviation. A final recommendation for the best clean-up condition for all six tested aminophosphonates is provided.•AMPA analysis without derivatisation is possible with optimised clean-up procedure•Clean-up procedure is combinable with derivatisation method of[2]•Procedure is simple, rapid and highly reproducible

Highlights

  • Sample analysis of phosphonates based on LC-ESI-MS allows precise quantification and identification of known and unknown phosphonate structures

  • We provide supplementary data and protocols related to the article “Rapid sample clean-up procedure of aminophosphonates for LC/MS analysis” [1]

  • It is demonstrated that the tested phosphonates iminodi(methylenephosphonic acid) (IDMP), hydroxyethelidene(diphosphonic acid) (HEDP), aminotris(methylenephosphonic acid) (ATMP), ethylenediaminetetra(methyloenephosphonic acid) (EDTMP) and diethylenetriaminepenta(methylenephosphonic acid) (DTPMP) dissolved in tap water are not detectable by LC/MS without sample clean-up

Read more

Summary

Method Article

Supplementary data on rapid sample clean-up procedure of aminophosphonates for LC/MS analysis. We provide supplementary data and protocols related to the article “Rapid sample clean-up procedure of aminophosphonates for LC/MS analysis” (revised article submitted to Talanta) [1]. It is demonstrated that the tested phosphonates iminodi(methylenephosphonic acid) (IDMP), hydroxyethelidene(diphosphonic acid) (HEDP), aminotris(methylenephosphonic acid) (ATMP), ethylenediaminetetra(methyloenephosphonic acid) (EDTMP) and diethylenetriaminepenta(methylenephosphonic acid) (DTPMP) dissolved in tap water are not detectable by LC/MS without sample clean-up. The optimised sample clean-up with cation exchange resin (CER) Dowex 50WX8 is described in detail and illustrated. Method name: Sample clean-up applying strong cation exchange resin Dowex 50WX8 Keywords: Phosphonates, LC/MS analysis, Cation Exchange Resin, Clean-up Article history: Received October 2019; Accepted May 2020; Available online 23 May 2020. Chemistry Sample clean-up of highly polar substances for LC/MS analysis Sample clean-up applying strong cation exchange resin Dowex 50WX8 S.

Background
Standard solutions in UPW
Standard solutions in TW
Findings
Method validation
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.