Abstract

The ZX-calculus is a powerful diagrammatic language for quantum mechanics and quantum information processing. We prove that its \pi/4-fragment is not complete, in other words the ZX-calculus is not complete for the so called "Clifford+T quantum mechanics". The completeness of this fragment was one of the main open problems in categorical quantum mechanics, a programme initiated by Abramsky and Coecke. The ZX-calculus was known to be incomplete for quantum mechanics. On the other hand, its \pi/2-fragment is known to be complete, i.e. the ZX-calculus is complete for the so called "stabilizer quantum mechanics". Deciding whether its \pi/4-fragment is complete is a crucial step in the development of the ZX-calculus since this fragment is approximately universal for quantum mechanics, contrary to the \pi/2-fragment. To establish our incompleteness result, we consider a fairly simple property of quantum states called supplementarity. We show that supplementarity can be derived in the ZX-calculus if and only if the angles involved in this equation are multiples of \pi/2. In particular, the impossibility to derive supplementarity for \pi/4 implies the incompleteness of the ZX-calculus for Clifford+T quantum mechanics. As a consequence, we propose to add the supplementarity to the set of rules of the ZX-calculus. We also show that if a ZX-diagram involves antiphase twins, they can be merged when the ZX-calculus is augmented with the supplementarity rule. Merging antiphase twins makes diagrammatic reasoning much easier and provides a purely graphical meaning to the supplementarity rule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.