Abstract

Year-round demand for locally sourced specialty cut flowers continues to increase. However, due to low radiation intensities and temperatures, growers in northern latitudes must utilize greenhouses, but limited production information detailing manipulation of the radiation environment exists. Therefore, our objective is to quantify the influence of supplemental lighting (SL) quality on time to flower and harvest and stem quality of three long-day specialty cut flowers. Godetia ‘Grace Rose Pink’ (Clarkia amoena), snapdragon ‘Potomac Royal’ (Antirrhinum majus), and stock ‘Iron Rose’ (Matthiola incana) plugs are transplanted into bulb crates and placed in one of six greenhouse compartments with SL providing a total photon flux density of 120 µmol·m−2·s−1 from 0700 to 1900 HR. After four weeks, SL is extended to provide a 16 h photoperiod to induce flowering. SL treatments are provided by either high-pressure sodium (HPS) fixtures or various light-emitting diode (LED) fixtures. Treatments are defined by their 100 nm wavebands of blue (B; 400–500 nm), green (G; 500–600 nm), red (R; 600–700 nm), and far-red (FR; 700–800 nm) radiation (photon flux density in μmol·m−2·s−1) as B7G60R44FR9 (HPS120), B20G50R45FR5, B20R85FR15, B30G25R65, B120, or R120. Time to harvest (TTH) is up to 14, 15, and 10 d slower under R120 SL for godetia, snapdragon, and stock, respectively, compared to the quickest treatments (HPS120, B120, and B20R85FR15 SL). However, R120 SL produces cut flowers up to 18% longer than those grown under the quickest treatments. Both broad-spectrum LED fixtures slightly delay TTH compared to the quickest treatments. Stem caliper is not commercially different between treatments for godetia or snapdragon, although stems are up to 14% thinner for stock grown under B120 SL compared to the other treatments. Flower petal color is not commercially different between SL treatments. We recommend utilizing a SL fixture providing a spectrum similar to B20R85FR15 SL or B20G50R45FR5, as they elicit desirable crop responses with minimal developmental, quality, and visibility tradeoffs. While HPS lamps perform similarly to the recommended fixtures, we recommend utilizing LEDs for their higher photon efficacy and potential energy savings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call