Abstract

Background:The increasing use of kidneys from donations after cardiac death (DCD) for renal transplantation is hindered by negative outcomes owing to organ injury after prolonged warm and cold ischemia–reperfusion. Recently, hydrogen sulfide (H2S) has shown cytoprotective effects against ischemia–reperfusion injury; however, its effectiveness in the context of DCD renal transplantation is unknown.Methods:We tested a novel 30-day in vivo syngeneic murine model of DCD renal transplantation, in which the donor kidney was clamped for 30 minutes and stored for 18 hours in cold University of Wisconsin (UW) solution or UW with 150 μM sodium hydrogen sulfide (UW + NaHS) before transplantation. We also tested a 7-day in vivo porcine model of DCD renal autotransplantation, in which the left kidney was clamped for 60 minutes and preserved for 24 hours using hypothermic perfusion with UW or UW + 150 μM NaHS before autotransplantation. We collected blood and urine samples periodically, and collected kidney samples at the end point for histopathology and quantitative reverse transcription polymerase chain reaction.Results:Rats that received H2S-treated kidneys showed significantly higher survival, faster recovery of graft function and significantly lower acute tubular necrosis than controls. Pig kidneys perfused with UW + NaHS showed significantly higher renal blood flow and lower renal resistance than control kidneys after 24 hours of perfusion. After autotransplantation, pigs that received H2S-treated kidneys showed significantly lower serum creatinine on days 1 and 7 after transplantation. Rat and pig kidneys treated with H2S also showed more protective gene expression profiles than controls.Conclusion:Our findings support the potential use of H2S-supplemented UW solution during cold storage as a novel and practical means to improve DCD graft survival and function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call