Abstract

A streamline upwind/Petrov–Galerkin (SUPG) finite element method based on a penalty function is proposed for steady incompressible Navier–Stokes equations. The SUPG stabilization technique is employed for the formulation of momentum equations. Using the penalty function method, the continuity equation is simplified and the pressure of the momentum equations is eliminated. The lid-driven cavity flow problem is solved using the present model. It is shown that steady flow simulations are computable up to $$Re = 27500$$ , and the present results agree well with previous solutions. Tabulated results for the properties of the primary vortex are also provided for benchmarking purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.