Abstract

With the advantages of one-dimensional hollow structure, high porosity and prominent mechanical strength, single-walled carbon nanotubes (SWCNTs) have been extensively utilized to improve conventional filtration membranes for oil/water separation. Their intrinsic hydrophobicity, however, adversely affects the anti-fouling performance of the SWCNT membrane. Herein, a super-hydrophilic and underwater super-oleophobic hierarchical modified membrane with enhanced permeability and anti-fouling property was fabricated using the vacuum-assisted filtration technique by synergistically assembling SWCNTs and titanium dioxide (TiO2) nanoparticles on a cellulose acetate membrane. Highly dispersed SWCNTs were obtained by carboxylating treatment of agglomerate SWCNTs. The controlled stacking of SWCNTs fibers and a controllable amount of TiO2 rendered a modified membrane with high porosity and hierarchical structure, leading to an ultrahigh water flux up to 4,777.07 L·m−2·h−1, and excellent separation performance with efficiency greater than 99.47%. Most importantly, the membrane exhibited excellent anti-fouling ability during ten cycles with the aid of the super-wetting property of TiO2 nanoparticles. The results indicated that coating TiO2 nanoparticles on SWCNTs modified the surface topography of the obtained SWCNT/TiO2 membrane, which improved hydrophilicity, permeability and anti-fouling property, manifesting attractive potential applications in oil/water separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.