Abstract

This paper presents an introduction to and a formal connection between synthesis problems for discrete event systems that have been considered, largely separately, in the two research communities of supervisory control in control engineering and reactive synthesis in computer science. By making this connection mathematically precise in a paper that attempts to be as self-contained as possible, we wish to introduce these two research areas to non-expert readers and at the same time to highlight how they can be bridged in the context of classical synthesis problems. After presenting general introductions to supervisory control theory and reactive synthesis, we provide a novel reduction of the basic supervisory control problem, non-blocking case, to a problem of reactive synthesis with plants and with a maximal permissiveness requirement. The reduction is for fully-observed systems that are controlled by a single supervisor/controller. It complements prior work that has explored problems at the interface of supervisory control and reactive synthesis. The formal bridge constructed in this paper should be a source of inspiration for new lines of investigation that will leverage the power of the synthesis techniques that have been developed in these two areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call