Abstract

Many published papers show that a TSK-type fuzzy system provides more powerful representation than a Mamdani-type fuzzy system. Radial basis function (RBF) network has a similar feature to the fuzzy system. As this result, this article proposes a dynamic TSK-type RBF-based neural-fuzzy (DTRN) system, in which the learning algorithm not only online generates and prunes the fuzzy rules but also online adjusts the parameters. Then, a supervisory adaptive dynamic RBF-based neural-fuzzy control (SADRNC) system which is composed of a DTRN controller and a supervisory compensator is proposed. The DTRN controller is designed to online estimate an ideal controller based on the gradient descent method, and the supervisory compensator is designed to eliminate the effect of the approximation error introduced by the DTRN controller upon the system stability in the Lyapunov sense. Finally, the proposed SADRNC system is applied to control a chaotic system and an inverted pendulum to illustrate its effectiveness. The stability of the proposed SADRNC scheme is proved analytically and its effectiveness has been shown through some simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.