Abstract

In the framework of automated manufacturing systems (AMS), Petri nets are widely used to model, analyze, and control them. Resolving deadlocks is of paramount significance because their emergence may likely zero a systems throughput, if not necessarily. Supervisory control technique is the most widely adopted method to resolve them. A control policy can be converted into satisfying a set of inequalities, each of which corresponds to a siphon in a Petri net structure. The number of siphons can be exponential in the worst case, so does the number of inequalities. Taking into account the independent and dependent inequalities, this paper proposes a method to remove all the dependent inequalities, while preserving only the independent ones. This method can significantly reduce the size of a supervisory controller. Examples are presented to illustrate the effectiveness and efficiency of this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.