Abstract

A hierarchical control strategy consisting on a supervisory switching of PID controllers, simplified using the c-Means clustering technique, is developed and applied to the distributed collector field of a solar power plant. The main characteristic of this solar plant is that the primary energy source, the solar radiation, cannot be manipulated. It varies throughout the day, causing changes in plant dynamics conducting to distinct several operating points. To guarantee good performances in all operating points, a local PID controller is tuned to each operating point and a supervisory strategy is proposed and applied to switch among these controllers accordingly to the actual measured conditions. Each PID controller has been tuned off-line, by the combination of a dynamic recurrent non-linear neural network model with a pole placement control design. To reduce the number of local controllers, to be selected by the supervisor, a c-Means clustering technique was used. Simulation and experimental results, obtained at Plataforma Solar de Almería, Spain, are presented showing the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.