Abstract
When building traditional Bag of Visual Words (BOW) for image classification, the K-means algorithm is usually used on a large set of high dimensional local descriptors to build the visual dictionary. However, it is very likely that, to find a good visual vocabulary, only a sub-part of the descriptor space of each visual word is truly relevant. We propose a novel framework for creating the visual dictionary based on a spectral subspace clustering method instead of the traditional K-means algorithm. A strategy for adding supervised information during the subspace clustering process is formulated to obtain more discriminative visual words. Experimental results on real world image dataset show that the proposed framework for dictionary creation improves the classification accuracy compared to using traditionally built BOW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.