Abstract
The proper generation of fuzzy membership function is of fundamental importance in fuzzy applications. The effectiveness of the membership functions in pattern classifications can be objectively measured in terms of interpretability and classification accuracy in the conformity of the decision boundaries to the inherent probabilistic decision boundaries of the training data. This paper presents the Supervised Pseudo Self-Evolving Cerebellar (SPSEC) algorithm that is bio-inspired from the two-stage development process of the human nervous system whereby the basic architecture are first laid out without any activity-dependent processes and then refined in activity-dependent ways. SPSEC first constructs a cerebellar-like structure in which neurons with high trophic factors evolves to form membership functions that relate intimately to the probability distributions of the data and concomitantly reconcile with defined semantic properties of linguistic variables. The experimental result of using SPSEC to generate fuzzy membership functions is reported and compared with a selection of algorithms using a publicly available UCI Sonar dataset to illustrate its effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.