Abstract

The goal of protein family classification is to group proteins into families so that proteins within the same family have common function or are related by ancestry. While supervised classification algorithms are available for this purpose, most of these approaches focus on assigning unclassified proteins to known families but do not allow for progressive construction of new families from proteins that cannot be assigned. Although unsupervised clustering algorithms are also available, they do not make use of information from known families. By computing similarities between proteins based on pairwise sequence comparisons, we develop supervised classification algorithms that achieve improved accuracy over previous approaches while allowing for construction of new families. We show that our algorithm has higher accuracy rate and lower mis-classification rate when compared to algorithms that are based on the use of multiple sequence alignments and hidden Markov models, and our algorithm performs well even on families with very few proteins and on families with low sequence similarity. A software program implementing the algorithm (SClassify) is available online (http://faculty.cse.tamu.edu/shsze/sclassify).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.