Abstract

The methods of statistical pattern recognition are well suited to the problems of in vivo ultrasonic tissue characterization. This paper describes supervised pattern recognition methods for selecting features for tissue classification, calculating decision boundaries within the selected feature space, and evaluating the performance. We address the considerations of dimensionality and feature size which are important in classification problems where the underlying probability distributions are not completely known. Examples are given for the detection of diffuse liver disease in the clinical environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.