Abstract

Accurate distance estimation is a requirement for advanced driver assistance systems (ADAS) to provide drivers with safety-related functions such as adaptive cruise control and collision avoidance. Radars and lidars can be used for providing distance information; however, they are either expensive or provide poor object information compared to image sensors. In this study, we propose a lightweight convolutional deep learning model that can extract object-specific distance information from monocular images. We explore a variety of training and five structural settings of the model and conduct various tests on the KITTI dataset for evaluating seven different road agents, namely, person, bicycle, car, motorcycle, bus, train, and truck. Additionally, in all experiments, a comparison with the Monodepth2 model is carried out. Experimental results show that the proposed model outperforms Monodepth2 by 15% in terms of the average weighted mean absolute error (MAE).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.