Abstract

For supervised learning problems, dimensionality reduction is generally applied as a preprocessing step. However, coupled training of dimensionality reduction and supervised learning steps may improve the prediction performance. In this paper, we propose a novel dimensionality reduction algorithm coupled with a supervised kernel-based learner, called supervised multiple kernel embedding, that integrates multiple kernel learning to dimensionality reduction and performs prediction on the projected subspace with a joint optimization framework. Combining multiple kernels allows us to combine different feature representations and/or similarity measures toward a unified subspace. We perform experiments on one digit recognition and two bioinformatics data sets. Our proposed method significantly outperforms multiple kernel Fisher discriminant analysis followed by a standard kernel-based learner, especially on low dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.